Computing with chemical reaction networks: a tutorial
نویسندگان
چکیده
منابع مشابه
Chemical Reaction Networks for Computing Polynomials.
Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these func...
متن کاملChemical Reaction Optimization: a tutorial - (Invited paper)
Chemical Reaction Optimization (CRO) is a recently establishedmetaheuristics for optimization, inspired by the nature of chemical reactions. A chemical reaction is a natural process of transforming the unstable substances to the stable ones. In microscopic view, a chemical reaction starts with some unstable molecules with excessive energy. Themolecules interact with each other through a sequenc...
متن کاملComputing Hopf Bifurcations in Chemical Reaction Networks Using Reaction Coordinates
The analysis of dynamic of chemical reaction networks by computing Hopf bifurcation is a method to understand the qualitative behavior of the network due to its relation to the existence of oscillations. For low dimensional reaction systems without additional constraints Hopf bifurcation can be computed by reducing the question of its occurrence to quantifier elimination problems on real closed...
متن کاملA tutorial on monotone systems- with an application to chemical reaction networks
Monotone systems are dynamical systems for which the flow preserves a partial order. Some applications will be briefly reviewed in this paper. Much of the appeal of the class of monotone systems stems from the fact that roughly, most solutions converge to the set of equilibria. However, this usually requires a stronger monotonicity property which is not always satisfied or easy to check in appl...
متن کاملTranslated chemical reaction networks.
Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Natural Computing
سال: 2019
ISSN: 1567-7818,1572-9796
DOI: 10.1007/s11047-018-9723-9